Relative Weak Injectivity for Operator Systems

Ali S. Kavruk Virginia Commonwealth University

Purdue University, West Lafayette

Purdue Operator Algebras Seminar

March 6, 2018

- Operator systems and tensor products
- ▶ Relative Weak Injectivity For C*-algebras
- ▶ Relative Weak Injectivity For Operator Systems
 - WEP and WRI for operator systems
 - C*-systems and (c,max)-nuclearity
 - Relative double commutant injectivity
 - Quasi-nuclearity

Concrete Operator Systems

A (concrete) operator system S is a unital, *-closed subspace of $B(\mathcal{H})$ together with the induced matricial order structure.

Looking at this way:

(1) S has an involution * (i.e. self-adjoint idempotent), therefore S has self-adjoint elements ($s = s^*$), denoted by S_{sa}

(2) S has positive elements: $S^+ = S \cap B(\mathcal{H})^+$, which forms a cone,

(3) $M_n(S)$, $n \times n$ matrices with entries belongs to S, has also positive elements with the identification

 $M_n(B(\mathcal{H})) \cong B(\mathcal{H} \oplus \mathcal{H} \oplus \cdots \oplus \mathcal{H}),$

(4) the cones $\{M_n(\mathcal{S})^+\}_{n=1}^{\infty}$ are *compatible*: for any $n \times m$ matrix A we have $A^*M_n(\mathcal{S})^+A \subseteq M_m(\mathcal{S})^+$

(5) S has an matricial Archimedean order unit I: order unit: $\forall x \in S_{sa}, \exists \alpha \in \mathbb{R}^+$ with $\alpha I + x \in S^+$. Archimedean: $\forall \varepsilon > 0 \ x + \varepsilon I \ge 0 \Rightarrow x \ge 0$.

matricial: so $\begin{bmatrix} I & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & I \end{bmatrix}$ is Archimedean order unit for $M_n(\mathcal{S})$.

Abstract Operator Systems, Morphisms

An (abstract) **operator system** $S = (S, \{M_n(S)^+\}_{n=1}^{\infty}, 1)$ where

(1) \mathcal{S} is a *-vector space,

(2) $\{M_n(\mathcal{S})^+\}_{n=1}^{\infty}$ is a cone of strict, compatible collection of positive elements with $M_n(\mathcal{S})^+ \subseteq M_n(\mathcal{S})_{sa}$,

(3) 1 is a matricial Archimedean order unit.

A linear map $\varphi : S \to T$ is called **positive** if $\varphi(S^+) \subseteq T^+$, **completely positive** if $\varphi^{(n)} : M_n(S) \to M_n(T)$ is positive for all n, **unital** if $\varphi(1) = 1$.

 φ is said to be a **ucp** map if it's unital and completely positive.

 φ is said to be a **unital complete order isomorphism** if φ and φ^{-1} are both ucp maps.

Theorem. (Choi, Effros, '77) Every (abstract) operator system is unitally completely order isomorphic to a concrete operator system.

Tensor Products

We endow the algebraic tensor product $S \otimes T$ with a matricial order structure $\{C_n\}_{n=1}^{\infty}$ such a way that it is an operator system with unit $1 \otimes 1$. Moreover, the matricial order structure has certain compatibility properties with the underlying structures of S and T. For example we require

$$M_n(\mathcal{S})^+ \otimes M_m(\mathcal{T})^+ \subseteq C_{nm}$$

Also, if $\varphi : \mathcal{S} \to M_n$ and $\psi : \mathcal{T} \to M_m$ are ucp maps then

$$\varphi \otimes \psi : \mathcal{S} \otimes \mathcal{T} \to M_n \otimes M_m \cong M_{nm}$$

must also be a ucp map.

Operator systems possess many different tensor products and the set of all tensor products form a partially ordered set with a minimal and maximal one:

$$\otimes_{\min} \ \leq \otimes_e \ \leq \ \otimes_{el} \ , \ \otimes_{er} \ , \ \otimes_{ess} \ \leq \ \otimes_c \ \leq \otimes_{max}$$

Today we will need: $\otimes_{\min} \leq \otimes_{er} \leq \otimes_{c} \leq \otimes_{\max}$.

Tensor Products 2

The minimal tensor product is the spatial one: for $S \subseteq B(\mathcal{H})$ and $\mathcal{T} \subseteq B(\mathcal{K})$ the operator system structure on $S \otimes \mathcal{T}$ arising from the inclusion $B(\mathcal{H} \otimes_2 \mathcal{K})$ can be declared as the minimal tensor product.

To define maximal tensor products we first introduce

$$D_n^{\max} = \{ A^*(X \otimes Y)A : X \in M_k(\mathcal{S})^+, Y \in M_m(\mathcal{T})^+,$$

A is $km \times n$ matrix, $k, m \in \mathbb{N}$.

Setting $C_n^{\max} = \overline{D_n^{\max}}$, the closure of D_n^{\max} relative to order norm, we obtain a matricial order structure $\{C_n^{\max}\}_{n=1}^{\infty}$ on $\mathcal{S} \otimes \mathcal{T}$. The resulting operator system is denoted by $\mathcal{S} \otimes_{\max} \mathcal{T}$.

The right injective tensor products: for $\mathcal{T} \subseteq B(\mathcal{H})$ and \mathcal{S} we decleare

$$\mathcal{S} \otimes_{\mathrm{er}} \mathcal{T} :\subseteq \mathcal{S} \otimes_{\mathrm{max}} B(\mathcal{H}).$$

Commuting tensor product of \mathcal{S} and \mathcal{T} can be defined as follows

$$\mathcal{S} \otimes_{\mathrm{c}} \mathcal{T} :\subseteq C^*_u(\mathcal{S}) \otimes_{\mathrm{max}} C^*_u(\mathcal{T}).$$

Nuclearity

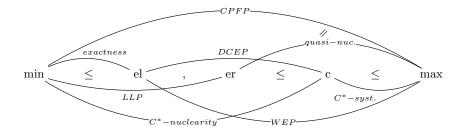
For operator system tensor products α and β we write $\alpha \leq \beta$ if for every operator systems S and T the canonical map

 $\mathcal{S} \otimes_{\beta} \mathcal{T} \to \mathcal{S} \otimes_{\alpha} \mathcal{T}$ is completely positive.

 \mathcal{S} is said to be (α, β) -nuclear if for every operator system \mathcal{T} we have

 $\mathcal{S} \otimes_{\alpha} \mathcal{T} = \mathcal{S} \otimes_{\beta} \mathcal{T}$ canonically.

 ${\mathcal S}$ is called nuclear if it is (min,max)-nuclear.



Weak expectation property (WEP)

C. Lance ('72) introduces following fundamental nuclearity property:

Definition. A unital C*-algebra \mathcal{A} has **WEP** if for every faithful embedding $\mathcal{A} \subset B(\mathcal{H})$ there is a ucp map $\varphi : B(\mathcal{H}) \to B(\mathcal{H})$ with $\varphi(a) = a$ for every $a \in \mathcal{A}$ and $\operatorname{image}(\varphi) \subset A''$.

WEP has several different formulations and for von Neumann algebras it is equivalent to injectivity. As pointed out by Effros and Haagerup, for general C*-algebras, WEP is equivalent to approximate injectivity in matrix systems.

WEP is a non-commutative property and it coincides with categorical nuclearity in Banach spaces or Kadison spaces.

WEP is a nuclearity related property, in fact \mathcal{A} has WEP if and only if

 $\mathcal{A} \otimes_{\max} \mathcal{C} \subset \mathcal{B} \otimes_{\max} \mathcal{C} \text{ for all } \mathcal{C} \text{ and } \mathcal{B} \supset \mathcal{A}.$

Kirchberg's QWEP conjecture states that every unital C*-algebra is a quotient of a C*-algebra with WEP.

Relative weak injectivity

E. Kirchberg ('93) introduces the notion of w.r.i.

Definition. A unital C*-subalgebra \mathcal{A} of \mathcal{B} is said to be w.r.i. in \mathcal{B} if the canonical inclusion of \mathcal{A} into bidual von Neumann algebra \mathcal{A}^{**} extends to a completely positive map on \mathcal{B} . Equivalently, for every Hilbert space \mathcal{H} , for every ucp map $\varphi : \mathcal{A} \to \mathcal{B}(\mathcal{H}), \varphi$ extends to a ucp map $\tilde{\varphi} : \mathcal{B} \to \mathcal{B}(\mathcal{H})$ such that $image(\tilde{\varphi}) \subseteq \varphi(\mathcal{A})''$.

In this case \mathcal{A} inherits all the nuclearity-related properties of \mathcal{B} : CPFP, LLP, WEP etc.

WRI is a nuclearity related property:

Theorem. (Kirchberg) The following are equivalent for $\mathcal{A} \subseteq \mathcal{B}$: (1) \mathcal{A} is w.r.i. in \mathcal{B} ; (2) $\mathcal{A} \otimes_{\max} \mathcal{C} \subseteq \mathcal{B} \otimes_{\max} \mathcal{C}$ for every C*-algebra \mathcal{C} ; (3) $\mathcal{A} \otimes_{\max} C^*(\mathbb{F}_{\infty}) \subseteq \mathcal{B} \otimes_{\max} C^*(\mathbb{F}_{\infty})$.

Tight Riesz Interpolation / Riesz Arveson Decomposition

Definition: Consider $\mathcal{A} \subset \mathcal{B}$. We say that \mathcal{A} has tight (n, k)-Riesz interpolation property in \mathcal{B} , $\operatorname{TR}(n, k)$ -property in short, if self-adjoint elements $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_k$ of \mathcal{A} interpolate in \mathcal{B} , meaning that there is a self-adjoint element b in \mathcal{B} such that

 $x_1, x_2, ..., x_n < b < y_1, y_2, ..., y_k,$

then $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_k$ interpolate in \mathcal{A} . Likewise, we say that \mathcal{A} has the complete $\operatorname{TR}(n, k)$ -property in \mathcal{B} , if $M_p(\mathcal{A})$ has the $\operatorname{TR}(n, k)$ -property in $M_p(\mathcal{B})$ for every p.

Definition: Consider $\mathcal{A} \subset \mathcal{B}$. We say that \mathcal{A} has (n, k)-Riesz-Arveson decomposition property in \mathcal{B} , if for $\mathcal{H} = \ell^2(\mathbb{N})$, every cp maps $\phi_i, \psi_j : \mathcal{A} \to B(\mathcal{H}), i = 1, ..., n, j = 1, ..., m$ with $\sum \phi_i = \sum \psi_j$ extends to cp maps $\tilde{\phi}_i, \tilde{\psi}_j : \mathcal{B} \to B(\mathcal{H})$ such that

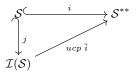
$$\sum \tilde{\phi}_i = \sum \tilde{\psi}_j.$$

Theorem. (K. '16) The following are equivalent for C*-algebras $\mathcal{A} \subseteq \mathcal{B}$: (1) \mathcal{A} is w.r.i. in \mathcal{B} ;

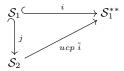
- (2) \mathcal{A} has the complete tight (n, k)-Riesz interpolation in \mathcal{B} for every n, k;
- (3) \mathcal{A} has the (n, k)-Riesz-Arveson decomposition property in \mathcal{B} for all n, k.

Relative weak injectivity for operator systems

WEP: An operator system S is said to have **weak expectation property** if the canonical inclusion $S \hookrightarrow S^{**}$ decomposes through an injective object via ucp maps.



WRI: Consider $S_1 \subseteq S_2$, where S_1 is an operator subsystem of S_2 . S_1 is said be **relatively weakly injective** in S_2 if the canonical inclusion $S_1 \hookrightarrow S_1^{**}$ extends to ucp map on S_2 :



WRI and nuclearity

Theorem. (K.) The following are equivalent for $S_1 \subseteq S_2$: (1) S_1 is w.r.i. in S_2 ;

(2) $\mathcal{S}_1 \otimes_{\max} \mathcal{T} \subset \mathcal{S}_2 \otimes_{\max} \mathcal{T}$, for every operator system \mathcal{T} ;

(3) for every n and null-subspace $J \subset M_n$ we have unital order embedding

 $\mathcal{S}_1 \otimes_{\max} (M_n/J) \subset \mathcal{S}_2 \otimes_{\max} (M_n/J);$

(4) for all matrix systems \mathcal{R} , every ucp map $\varphi : S_1 \to \mathcal{R}$ has a ucp extension $\tilde{\varphi} : S_2 \to \mathcal{R}$;

(5) for every operator system \mathcal{T} , every ucp map $\varphi : S_1 \to \mathcal{T}^{**}$ extends to a ucp map $\tilde{\varphi} : S_2 \to \mathcal{T}^{**}$;

(6) every state φ on S_1 has a state extension $\tilde{\varphi}$ on S_2 such that if ψ is positive linear functional on S_1 with $\psi \leq \varphi$, then ψ has positive extension $\tilde{\psi}$ on S_2 with $\tilde{\psi} \leq \tilde{\varphi}$. Moreover, this can be achieved such a way that $\psi \mapsto \tilde{\psi}$ is a cp map from $[\varphi]$ to $[\tilde{\varphi}]$ for which the restriction is the ucp inverse; (7) S_1^{**} is w.r.i. in S_2^{**} , moreover the inclusion of S_1^{**} into S_2^{**} has a ucp inverse.

C*-systems / WEP

Definition. An operator system S for which the bidual operator system S^{**} has a structure of a C*-algebra is called a C*-system.

Theorem. (K.) The following are equivalent for S:

- (1) S is a C*-system;
- (2) S is (c,max)-nuclear;
- (3) \mathcal{S} is w.r.i. in $C_u^*(\mathcal{S})$.

Theorem. The following are equivalent for \mathcal{S} :

- (1) \mathcal{S} has WEP;
- (2) S is (el,max)-nuclear;

(3) for every n and null-subspace $J \subset M_n$ we have an order osmorphism

$$\mathcal{S} \otimes_{\min} (M_n/J) = \mathcal{S} \otimes_{\max} (M_n/J);$$

(4) For every *n* and matrix system $\mathcal{R} \subset M_n$, for every cp map $\varphi : \mathcal{R} \to \mathcal{S}$ and $\epsilon > 0$, there exists a cp map $\tilde{\varphi} : M_n \to \mathcal{S}$ such that $\|\tilde{\varphi}\|_{\mathcal{R}} - \varphi\|_{cb} \leq \epsilon$.

Relative Double Commutant Injectivity

Consider $S_1 \subset S_2$. S_1 is said to have r.d.c.i. in S_2 if for every embedding $i: S \hookrightarrow B(\mathcal{H}), i$ extends to a ucp map $\tilde{i}: S_2 \to B(\mathcal{H})$ such that $\operatorname{Im}(\tilde{i}) \subseteq \operatorname{Im}(i)''$.

Theorem. (A. Bhattacharya) The following are equivalent for $S_1 \subseteq S_2$: (1) S_1 has r.d.c.i. in S_2 ;

- (2) $\mathcal{S}_1 \otimes_c \mathcal{T} \subset \mathcal{S}_2 \otimes_c \mathcal{T}$, for every operator system \mathcal{T} ;
- (3) $S_1 \otimes_{\max} \mathcal{A} \subset S_2 \otimes_{\max} \mathcal{A}$, for every C*-algebra \mathcal{A} ;

(4) We have a complete order embedding

$$\mathcal{S}_1 \otimes_{\max} C^*(\mathbb{F}_\infty) \subset \mathcal{S}_2 \otimes_{\max} C^*(\mathbb{F}_\infty).$$

(5) $C_u^*(\mathcal{S}_1)$ is w.r.i. in $C_u^*(\mathcal{S}_2)$.

(6) The canonical inclusion $i: \mathcal{S}_1 \hookrightarrow C^*_u(\mathcal{S}_1)^{**}$ extends to a ucp map on \mathcal{S}_2 .

Setting
$$\mathcal{W}_6 = \{a_1, ..., a_6 : a_1 + a_2 + a_3 = a_4 + a_5 + a_6\} \subseteq \ell_6^\infty$$

(7) $\mathcal{S}_1 \otimes_{\mathrm{c}} \mathcal{W}_6^* \subseteq \mathcal{S}_2 \otimes_{\mathrm{c}} \mathcal{W}_6^*$ completely order isomorphically.

Namioka and Phelp's test systems

We set
$$\mathcal{W}_{2n} = \{(a_i)_{i=1}^{2n} : \sum_{i=1}^n a_i = \sum_{i=n+1}^{2n} a_i\} \subseteq \ell_{2n}^{\infty}.$$

Theorem. (Namioka, Phelp) TFAE for a Kadison function system \mathcal{V} : (1) \mathcal{V} is nuclear, that is, for every Kadison function system \mathcal{W} we have

 $\mathcal{V}\otimes_{\varepsilon}\mathcal{W}=\mathcal{V}\otimes_{\pi}\mathcal{W};$

(2) we have a canonical order isomorphism $\mathcal{V} \otimes_{\varepsilon} \mathcal{W}_4 = \mathcal{V} \otimes_{\pi} \mathcal{W}_4$.

Theorem. (K. '15) TFAE for a unital C*-algebra \mathcal{A} :

(1) \mathcal{A} is nuclear, i.e., for every C*-algebra \mathcal{B} we have $\mathcal{A} \otimes_{\min} \mathcal{B} = \mathcal{A} \otimes_{\max} \mathcal{B}$ (equivalently for every operator system \mathcal{S} we have $\mathcal{A} \otimes_{\min} \mathcal{S} = \mathcal{A} \otimes_{\max} \mathcal{S}$); (2) $\mathcal{A} \otimes_{\min} \mathcal{W}_6 = \mathcal{A} \otimes_{\max} \mathcal{W}_6$ completely order isomorphically.

Theorem. (K. '18) A C*-system S is nuclear if and only if $S \otimes_{\min} W_6 = S \otimes_{\max} W_6$.

Definition. An operator system S is called **quasi-nuclear** if for all $\mathcal{T}_1 \subseteq \mathcal{T}_2$ we have $S \otimes_{\max} \mathcal{T}_1 \subseteq S \otimes_{\max} \mathcal{T}_2$.

Theorem. (K. '18) The following are equivalent for an operator system S: (1) S is nuclear;

- (2) S is quasi-nuclear;
- (3) \mathcal{S} is (er,max)-nuclear;

(4) for every matrix system \mathcal{R} we have $\mathcal{S} \otimes_{\min} \mathcal{R} = \mathcal{S} \otimes_{\max} \mathcal{R}$.

Question: if $\mathcal{S} \otimes_{\min} \mathcal{W}_6 = \mathcal{S} \otimes_{\max} \mathcal{W}_6$. can we conclude that \mathcal{S} is nuclear?

More Questions

Setting $J=span\{(1,1,1,-1,-1,-1)\}\subset \ell_6^\infty$ we have a complete order isomorphism

$$\ell_6^\infty/J = \mathcal{W}_6^*.$$

For C*-algebras $\mathcal{A} \subseteq \mathcal{B}$ we have

$$\mathcal{A} \otimes_{\max} (\ell_6^{\infty}/J) \subseteq \mathcal{B} \otimes_{\max} (\ell_6^{\infty}/J)$$

implies that \mathcal{A} is w.r.i. in \mathcal{B} , that is

$$\mathcal{A} \otimes_{\max} \mathcal{T} \subseteq \mathcal{B} \otimes_{\max} \mathcal{T}$$

for all operator system \mathcal{T} . Likewise, for operator systems $\mathcal{S}_1 \subseteq \mathcal{S}_2$ a canonical inclusion

$$\mathcal{S}_1 \otimes_{\mathrm{c}} (\ell_6^\infty/J) \subseteq \mathcal{S}_2 \otimes_{\mathrm{c}} (\ell_6^\infty/J)$$

implies that S_1 has r.d.c.i. in S_2 .

Question: Let $S_1 \subseteq S_2$ be given. If we have a canonical inclusion

$$\mathcal{S}_1 \otimes_{\max} (\ell_6^\infty/J) \subseteq \mathcal{S}_2 \otimes_{\max} (\ell_6^\infty/J)$$

can we conclude that S_1 has w.r.i. in S_2 ?

THANKS!