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Concrete Operator Systems
A (concrete) operator system S is a unital, ∗-closed subspace of B(H)
together with the induced matricial order structure.

Looking at this way:

(1) S has an involution ∗ (i.e. self-adjoint idempotent), therefore S has
self-adjoint elements (s = s∗), denoted by Ssa
(2) S has positive elements: S+ = S ∩B(H)+, which forms a cone,

(3) Mn(S), n× n matrices with entries belongs to S, has also positive
elements with the identification

Mn(B(H)) ∼= B(H⊕H⊕ · · · ⊕ H),

(4) the cones {Mn(S)+}∞n=1 are compatible: for any n×m matrix A we have

A∗Mn(S)+A ⊆Mm(S)+

(5) S has an matricial Archimedean order unit I:

order unit: ∀x ∈ Ssa, ∃α ∈ R+ with αI + x ∈ S+.

Archimedean: ∀ε > 0 x+ εI ≥ 0⇒ x ≥ 0.

matricial: so

 I · · · 0
...

. . .
...

0 · · · I

 is Archimedean order unit for Mn(S).
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Abstract Operator Systems, Morphisms

An (abstract) operator system S = (S, {Mn(S)+}∞n=1, 1) where

(1) S is a ∗-vector space,

(2) {Mn(S)+}∞n=1 is a cone of strict, compatible collection of positive
elements with Mn(S)+ ⊆Mn(S)sa,

(3) 1 is a matricial Archimedean order unit.

A linear map ϕ : S → T is called positive if ϕ(S+) ⊆ T +, completely
positive if ϕ(n) : Mn(S)→Mn(T ) is positive for all n, unital if ϕ(1) = 1.

ϕ is said to be a ucp map if it’s unital and completely positive.

ϕ is said to be a unital complete order isomorphism if ϕ and ϕ−1 are
both ucp maps.

Theorem. (Choi, Effros, ’77) Every (abstract) operator system is unitally
completely order isomorphic to a concrete operator system.
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Tensor Products

We endow the algebraic tensor product S ⊗ T with a matricial order
structure {Cn}∞n=1 such a way that it is an operator system with unit 1⊗ 1.
Moreover, the matricial order structure has certain compatibility properties
with the underlying structures of S and T . For example we require

Mn(S)+ ⊗Mm(T )+ ⊆ Cnm

Also, if ϕ : S →Mn and ψ : T →Mm are ucp maps then

ϕ⊗ ψ : S ⊗ T →Mn ⊗Mm
∼= Mnm

must also be a ucp map.

Operator systems possess many different tensor products and the set of all
tensor products form a partially ordered set with a minimal and maximal
one:

⊗min ≤ ⊗e ≤ ⊗el , ⊗er , ⊗ess ≤ ⊗c ≤ ⊗max

Today we will need: ⊗min ≤ ⊗er ≤ ⊗c ≤ ⊗max.
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Tensor Products 2
The minimal tensor product is the spatial one: for S ⊆ B(H) and
T ⊆ B(K) the operator system structure on S ⊗ T arising from the
inclusion B(H⊗2 K) can be declared as the minimal tensor product.

To define maximal tensor products we first introduce

Dmax
n = {A∗(X ⊗ Y )A : X ∈Mk(S)+, Y ∈Mm(T )+,

A is km× n matrix, k,m ∈ N}.
Setting Cmax

n = Dmax
n , the closure of Dmax

n relative to order norm, we
obtain a matricial order structure {Cmax

n }∞n=1 on S ⊗ T . The resulting
operator system is denoted by S ⊗max T .

The right injective tensor products: for T ⊆ B(H) and S we decleare

S ⊗er T :⊆ S ⊗max B(H).

Commuting tensor product of S and T can be defined as follows

S ⊗c T :⊆ C∗u(S)⊗max C
∗
u(T ).
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Nuclearity

For operator system tensor products α and β we write α ≤ β if for every
operator systems S and T the canonical map

S ⊗β T → S ⊗α T is completely positive.

S is said to be (α, β)-nuclear if for every operator system T we have

S ⊗α T = S ⊗β T canonically.

S is called nuclear if it is (min,max)-nuclear.

min

exactness

CPFP

LLP

C∗−nuclearity

≤ el

WEP

DCEP

, er

=
quasi−nuc.

≤ c

C∗−syst.

≤ max
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Weak expectation property (WEP)

C. Lance (’72) introduces following fundamental nuclearity property:

Definition. A unital C*-algebra A has WEP if for every faithful
embedding A ⊂ B(H) there is a ucp map ϕ : B(H)→ B(H) with ϕ(a) = a
for every a ∈ A and image(ϕ) ⊂ A′′.

WEP has several different formulations and for von Neumann algebras it is
equivalent to injectivity. As pointed out by Effros and Haagerup, for
general C*-algebras, WEP is equivalent to approximate injectivity in
matrix systems.

WEP is a non-commutative property and it coincides with categorical
nuclearity in Banach spaces or Kadison spaces.

WEP is a nuclearity related property, in fact A has WEP if and only if

A⊗max C ⊂ B ⊗max C for all C and B ⊃ A.

Kirchberg’s QWEP conjecture states that every unital C*-algebra is a
quotient of a C*-algebra with WEP.
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Relative weak injectivity
E. Kirchberg (’93) introduces the notion of w.r.i.

Definition. A unital C*-subalgebra A of B is said to be w.r.i. in B if the
canonical inclusion of A into bidual von Neumann algebra A∗∗ extends to a
completely positive map on B. Equivalently, for every Hilbert space H, for
every ucp map ϕ : A → B(H), ϕ extends to a ucp map ϕ̃ : B → B(H) such
that image(ϕ̃) ⊆ ϕ(A)′′.

In this case A inherits all the nuclearity-related properties of B:
CPFP, LLP, WEP etc.

WRI is a nuclearity related property:

Theorem. (Kirchberg) The following are equivalent for A ⊆ B:

(1) A is w.r.i. in B;

(2) A⊗max C ⊆ B ⊗max C for every C*-algebra C;
(3) A⊗max C

∗(F∞) ⊆ B ⊗max C
∗(F∞).
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Tight Riesz Interpolation / Riesz Arveson
Decomposition

Definition: Consider A ⊂ B. We say that A has tight (n, k)-Riesz
interpolation property in B, TR(n, k)-property in short, if self-adjoint
elements x1, x2, .., xn and y1, y2, ..., yk of A interpolate in B, meaning that
there is a self-adjoint element b in B such that

x1, x2, .., xn < b < y1, y2, ..., yk,

then x1, x2, .., xn and y1, y2, ..., yk interpolate in A.
Likewise, we say that A has the complete TR(n, k)-property in B, if Mp(A)
has the TR(n, k)-property in Mp(B) for every p.

Definition: Consider A ⊂ B. We say that A has (n, k)-Riesz-Arveson
decomposition property in B, if for H = `2(N), every cp maps
φi, ψj : A → B(H), i = 1, ..., n, j = 1, ...,m with

∑
φi =

∑
ψj extends to cp

maps φ̃i, ψ̃j : B → B(H) such that∑
φ̃i =

∑
ψ̃j .
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More on w.r.i. for C*-algebras

Theorem. (K. ’16) The following are equivalent for C*-algebras A ⊆ B:

(1) A is w.r.i. in B;

(2) A has the complete tight (n, k)-Riesz interpolation in B for every n, k;

(3) A has the (n, k)-Riesz-Arveson decomposition property in B for all n, k.
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Relative weak injectivity for operator systems

WEP: An operator system S is said to have weak expectation
property if the canonical inclusion S ↪→ S∗∗ decomposes through an
injective object via ucp maps.

S_�

j

��

� � i // S∗∗

I(S)

ucp ĩ

77

WRI: Consider S1 ⊆ S2, where S1 is an operator subsystem of S2. S1 is
said be relatively weakly injective in S2 if the canonical inclusion
S1 ↪→ S∗∗1 extends to ucp map on S2:

S1_�

j

��

� � i // S∗∗1

S2
ucp ĩ

77
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WRI and nuclearity

Theorem. (K.) The following are equivalent for S1 ⊆ S2:

(1) S1 is w.r.i. in S2;

(2) S1 ⊗max T ⊂ S2 ⊗max T , for every operator system T ;

(3) for every n and null-subspace J ⊂Mn we have unital order embedding

S1 ⊗max (Mn/J) ⊂ S2 ⊗max (Mn/J);

(4) for all matrix systems R, every ucp map ϕ : S1 →R has a ucp
extension ϕ̃ : S2 →R;

(5) for every operator system T , every ucp map ϕ : S1 → T ∗∗ extends to a
ucp map ϕ̃ : S2 → T ∗∗;
(6) every state ϕ on S1 has a state extension ϕ̃ on S2 such that if ψ is
positive linear functional on S1 with ψ ≤ ϕ, then ψ has positive extension ψ̃
on S2 with ψ̃ ≤ ϕ̃. Moreover, this can be achieved such a way that ψ 7→ ψ̃
is a cp map from [ϕ] to [ϕ̃] for which the restriction is the ucp inverse;

(7) S∗∗1 is w.r.i. in S∗∗2 , moreover the inclusion of S∗∗1 into S∗∗2 has a ucp
inverse.
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C*-systems / WEP
Definition. An operator system S for which the bidual operator system
S∗∗ has a structure of a C*-algebra is called a C*-system.

Theorem. (K.) The following are equivalent for S:

(1) S is a C*-system;

(2) S is (c,max)-nuclear;

(3) S is w.r.i. in C∗u(S).

Theorem. The following are equivalent for S:

(1) S has WEP;

(2) S is (el,max)-nuclear;

(3) for every n and null-subspace J ⊂Mn we have an order osmorphism

S ⊗min (Mn/J) = S ⊗max (Mn/J);

(4) For every n and matrix system R ⊂Mn, for every cp map ϕ : R→ S
and ε > 0, there exists a cp map ϕ̃ : Mn → S such that ‖ϕ̃|R − ϕ‖cb ≤ ε.
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Relative Double Commutant Injectivity
Consider S1 ⊂ S2. S1 is said to have r.d.c.i. in S2 if for every embedding
i : S ↪→ B(H), i extends to a ucp map ĩ : S2 → B(H) such that
Im(̃i) ⊆Im(i)′′.

Theorem. (A. Bhattacharya) The following are equivalent for S1 ⊆ S2:

(1) S1 has r.d.c.i. in S2;

(2) S1 ⊗c T ⊂ S2 ⊗c T , for every operator system T ;

(3) S1 ⊗max A ⊂ S2 ⊗max A, for every C*-algebra A;

(4) We have a complete order embedding

S1 ⊗max C
∗(F∞) ⊂ S2 ⊗max C

∗(F∞).

(5) C∗u(S1) is w.r.i. in C∗u(S2).

(6) The canonical inclusion i : S1 ↪→ C∗u(S1)∗∗ extends to a ucp map on S2.

Setting W6 = {a1, ..., a6 : a1 + a2 + a3 = a4 + a5 + a6} ⊆ `∞6

(7) S1 ⊗cW∗6 ⊆ S2 ⊗cW∗6 completely order isomorphically.
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Namioka and Phelp’s test systems

We set W2n = {(ai)2ni=1 :

n∑
i=1

ai =

2n∑
i=n+1

ai} ⊆ `∞2n.

Theorem. (Namioka, Phelp) TFAE for a Kadison function system V:

(1) V is nuclear, that is, for every Kadison function system W we have

V ⊗εW = V ⊗π W;

(2) we have a canonical order isomorphism V ⊗εW4 = V ⊗π W4.

Theorem. (K. ’15) TFAE for a unital C*-algebra A:

(1) A is nuclear, i.e., for every C*-algebra B we have A⊗min B = A⊗max B
(equivalently for every operator system S we have A⊗min S = A⊗max S);

(2) A⊗minW6 = A⊗maxW6 completely order isomorphically.

Theorem. (K. ’18) A C*-system S is nuclear if and only if
S ⊗minW6 = S ⊗maxW6.
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Quasi-nuclearity

Definition. An operator system S is called quasi-nuclear if for all
T1 ⊆ T2 we have S ⊗max T1 ⊆ S ⊗max T2.

Theorem. (K. ’18) The following are equivalent for an operator system S:

(1) S is nuclear;

(2) S is quasi-nuclear;

(3) S is (er,max)-nuclear;

(4) for every matrix system R we have S ⊗min R = S ⊗max R.

Question: if S ⊗minW6 = S ⊗maxW6. can we conclude that S is nuclear?
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More Questions
Setting J = span{(1, 1, 1,−1,−1,−1)} ⊂ `∞6 we have a complete order
isomorphism

`∞6 /J =W∗6 .
For C*-algebras A ⊆ B we have

A⊗max (`∞6 /J) ⊆ B ⊗max (`∞6 /J)

implies that A is w.r.i. in B, that is

A⊗max T ⊆ B ⊗max T

for all operator system T . Likewise, for operator systems S1 ⊆ S2 a
canonical inclusion

S1 ⊗c (`∞6 /J) ⊆ S2 ⊗c (`∞6 /J)

implies that S1 has r.d.c.i. in S2.

Question: Let S1 ⊆ S2 be given. If we have a canonical inclusion

S1 ⊗max (`∞6 /J) ⊆ S2 ⊗max (`∞6 /J)

can we conclude that S1 has w.r.i. in S2?
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THANKS!
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